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Goal-oriented mesh adaptation for finite volume methods using
a dissipation-based error indicator
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SUMMARY

The accuracy of functionals of solutions of the Euler equations, solved using a finite volume code, is
examined under grid refinement. It is shown that a commonly used adaptation indicator based on local
solution gradients is ineffective in reducing functional error for flows with supersonic regions. A novel
indicator is introduced which attempts to quantify that part of the error in the functional due to the explicitly
added dissipation present in the numerical flux. The scheme is considerably simpler and computationally
cheaper than other recently proposed a posteriori error estimators for finite volume schemes, but does not
account for all sources of error. Note that emphasis is placed on numerical evaluation of the performance
of the scheme, and it is shown to be extremely effective in both estimating and reducing error for a wide
range of flows. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

One of the principal advantages of unstructured mesh fluid solvers is the readiness with which the
mesh can be locally refined to suit the solution. The expectation is that by concentrating points in
regions of interest, important flow field features, such as shocks and vortices, can be resolved with
significantly less points than required for a globally finer mesh. However, it is not necessarily the
case that adding points locally will reduce global measures of error.

To ensure this an extremely successful theory of a posteriori error estimation has been developed
in the context of finite element methods [1–5]. Using the adjoint problem, which serves to relate
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local errors in the field to the error in a specified functional of interest J , it is possible to derive error
representation formulas and corresponding local error indicators, which do not require knowledge
of a more accurate solution of the original problem [6, 7].

However, the dominant methods in use for aerodynamic applications are currently second-
order finite volume codes, in which context the application of these techniques has proven dif-
ficult. The leading approach uses a globally refined grid to obtain the necessary estimate of
the local residual error [8–10], but this involves delicate second-order interpolation of possi-
bly discontinuous solutions between grids. Further storage of the fine grid represents a mem-
ory bottleneck for the entire solution process. These problems come in addition to the difficult
issue of robust and efficient solution of the adjoint problem for viscous flows in complex
geometries [11].

In light of these difficulties an alternative approach is proposed here, which also requires an
adjoint solution, but is otherwise considerably simpler to realize and cheaper to evaluate. We
consider the sensitivity of J to parameters controlling the level of explicitly added stabilizing
dissipation in the numerical method (here of the DLR TAU-code [12]). The essential idea is that
in regions where adding only a little dissipation has a large effect on J , the error in J due to
dissipation must be large. The required sensitivities may be accurately evaluated using the adjoint
method, and it will be shown that this scheme may be regarded as an approximation to an error
representation formula.

An obvious deficit of the approach is that sources of error other than those due to the dissipation,
namely truncation error and boundary condition contributions, are invisible to the sensor. Therefore,
the error estimator will only be effective if the dissipation error dominates, which experience
indicates is the case in finite volume codes. Nonetheless in the following emphasis is placed on
numerical evaluation of the performance of the method.

2. DISCRETIZATION OF THE GOVERNING EQUATIONS

Consider the stationary Euler equations for a compressible fluid in conservative variables w, with
analytic flux f , subject to slip boundary conditions, and discretized with the finite volume method
on a control volume �i with inner boundary �i , and domain boundary �b:

∫
�i

∇ · f d��
∫

�i

f̂ · n d� +
∫

�b

f̂b · n d�= 0

where f̂ and f̂b are numerical internal and boundary fluxes accounting for discontinuities at
volume interfaces. It is well known that f̂ must contain some added dissipation if the dis-
cretization is to be stable. This may be achieved by upwinding, or explicit addition of artificial
viscosity. The Jameson–Schmidt–Turkel (JST) scheme [13] employing the latter approach is ap-
plied here, for which the flux across a grid face {i j} connecting vertices i , j , and with normal
ni j is

f̂i j = 1
2

(
f (wi ) + f (w j )

) · ni j − 1
2 |�i j |[�(2)i j {w j − wi } − �(4)i j {L j (w) − Li (w)}] (1)
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where wi are the conservative variables at vertex i , |�i j | is the maximum convective eigenvalue at
the face, and

�(2)i j = k(2) max(�i , � j )�
(2), �(4)i j = max(k(4) − �(2)i j , 0)�(4)

Li (w)= ∑
j∈N(i)

(w j − wi ), �i =
∑

j∈N(i)(p j − pi )∑
j∈N(i)(p j + pi )

where N(i) is the set of vertex neighbours of i , � is a shock switch, which is large when
the gradient of pressure p is large, and thereby serves to identify shocks. The � contain some
heuristic mesh anisotropy corrections which aid accuracy on irregular meshes. Finally, k(2), k(4)

are ordinarily constants, typically 1
2 and 1

64 respectively, through which the level of second-
and fourth-order dissipation, and hence the compromise between stability and accuracy may be
adjusted. However, for the purposes of the estimation of error in dissipation in the following we
will consider them as variables.

3. A DISSIPATION-ERROR ESTIMATOR

As already mentioned most existing a posteriori error estimators require the local residual error
R(wh), the continuous state equation R evaluated for the discrete solution wh . This may be
approximated by a discrete residual evaluated at a higher order of accuracy [2, 14], or on a
uniformly refined mesh [8–10, 15].

To avoid this a novel a posteriori error estimator and corresponding mesh adaptation indicator is
proposed on the basis of two observations: (i) explicitly added artificial dissipation in unstructured
finite volume schemes is responsible for a large proportion of the error in the solution under typical
conditions of mesh resolution (i.e. that resolution required for engineering accuracy), and (ii) if
non-linear effects are neglected, the sensitivity of a goal function J to variation of the level of
dissipation is proportional to the error in J due to that dissipation.

The first observation is the result of extensive experience with finite volume methods for practical
engineering problems. However, it is not true in general: for a smooth solution the error due to
dissipation in JST is O(h3), while the method is second-order, and hence for a sufficiently refined
mesh the error due to the central difference in (1) dominates. However, this occurs well beyond
the point where calculations are conducted in practice.

The second observation is a consequence of the fact that grid-converged solutions are independent
of the level of dissipation. As h → 0 the dissipation, as well as the sensitivity of J to the coefficients
of dissipation, tend to zero. From this perspective any extant dissipation on finite grids may be
regarded as entirely spurious with respect to accuracy, and its quantitative effect on J may be
extrapolated using the sensitivity of J with respect to the dissipation coefficients.

On this basis, we propose a dissipation-error estimator for the JST scheme:

�J = k(2) dJ

dk(2)
+ k(4) dJ

dk(4)
(2)

In order to build an indicator for adaptation, however, local sensitivity information is required, and
to this end the dissipation coefficients may be interpreted as being defined independently for each
control volume, with the coefficient on a face being an average of neighbours, ki j = 1

2 (ki + k j ),
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and the sensitivity of J evaluated with respect to all these parameters. In order to do this effi-
ciently and accurately an adjoint approach, also used for evaluating sensitivities with respect to
geometry modifications in gradient-based optimization [16], is applied. Consider the Lagrangian:
L(w, k,�) = J (w) + �TR(w, k) (with Lagrange multiplier �), which always takes the value J
provided the discrete counterpart of the state equation R(w, k) = 0 is fulfilled. Then

dJ

dk
= dL

dk
= �J

�w

dw

dk
+ �T

{
�R
�k

+ �R
�w

dw

dk

}
=

{
�J
�w

+ �T �R
�w

}
dw

dk
+ �T �R

�k
= �T �R

�k

whereby the final equality holds if � satisfies the adjoint equation

�R
�w

T

�=− �J
�w

T

For a given cost function � must be evaluated only once in order to calculate the sensitivity of J
with respect to any number of parameters. In our case, the remaining term in the expression for
the gradient may be written down explicitly. For k(4) and the discrete residual at vertex i , Ri , for
example, is

�Ri

�k(4)
j

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
m∈N(i)

− 1

4
|�im |{Lm(w) − Li (w)}, j = i

− 1
4 |�i j |{L j (w) − Li (w)}, j ∈N(i)

0 otherwise

(3)

and is always of the same order as the original dissipation term. Note that the relations

∑
i

�Ri

�k(4)
j

= 0,
∑
j

�Ri

�k(4)
j

= �Ri

�k(4)

hold, so that the sum of all local error indicators is the total error estimator as expected.
Before this estimator is studied numerically, it is useful to examine its relationship to the wider

theory of error representation formulas, for example, [7, 17]. Moving to a continuous perspective,
let the governing equations be written R(w)= 0, where w is now the exact solution of the
continuous problem, and the solution of the discrete problem is written wh . Assume there exist
Fréchet derivatives R′

ww̃ and (J ′
w, w̃) of R and J , respectively, about w for general w̃. Then, the

linear adjoint problem and the corresponding equivalence relation may be written as

R′∗
w�= J ′

w, (R′∗
w�, ũ) = (�,R′

wũ)

where the inner product is a volume integral over �. In addition, let �h be the solution of the
discretized adjoint problem, and define J ′

h :=R′∗
wh

�h . In order to handle the non-linearity of R
introduce its mean-value linearization and the corresponding relation:

R̄
′ =

∫ 1

0
R′

w+�(wh−w) d�, R(wh) − R(w)=
∫ 1

0

�
��

R(w + �(wh − w)) d�= R̄
′
(wh − w)
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Figure 1. Convergence of cD (top row) and cL (bottom row) errors for global, local-gradient and
dissipation-error refinement, for sub-, trans- and supersonic cases (left to right).

and similarly for J . Using these relations we obtain

J (wh) − J (w) = ( J̄ ′
w,wh − w)� (J ′

h, wh − w) = (R′∗
wh

�h, wh − w)

= (�h,R
′
wh

(wh − w))� (�h, R̄
′
(wh − w))= (�h,R(wh)) (4)

where the final equality uses R(w)= 0, and the terms neglected in the approximate equalities
above are of the order of ‖wh − w‖2 and ‖wh − w‖‖�h − �‖. Thus, the error in J is recast in
terms of solutions of the discrete problem and its adjoint, without reference to the solution of the
original continuous problem.

A computable estimate of the error may be obtained by approximating R(·) in the final term
of (4); however, the original discretization is not acceptable because R(wh) ≡ 0. The response is
either to evaluate R on a globally refined mesh [8], at a higher order [14], or to apply a modified
discretization. For example, Müller and Giles [17] evaluated the integral of the analytic flux about
each control volume rather than a numerical flux. This latter approach is almost equivalent to the
indicator already described. To see this write the inner flux discretization as two additively separated
parts R(wh) = F(wh) + D(wh) = 0, where F is the central difference and D the dissipation.
Clearly, the two parts are identical in value up to a sign difference. Noting further that if the
averaging of the dissipation coefficients between neighbouring vertices onto a face were not
performed, then the dissipation derivative (3) would take the same form as the dissipation itself,
we can conclude that k �R/�k is approximately −F , and therefore �J may also be regarded as a
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Figure 2. Meshes for sub-, trans- and supersonic cases using solution gradient adaptation (top), and
dissipation-error adaptation for cL (bottom), with similar grid size.

computable approximation to an error representation formula (4). To determine the validity of the
approximation numerical investigations follow.

4. NUMERICAL RESULTS

To quantify the effectiveness of the refinement indicator we consider the NACA0012 aerofoil
at sub-, trans- and supersonic onflow conditions, namely (M∞, �) = (0.5, 0.0), (0.85, 2.0) and
(1.5, 1.0), where M∞ is the onflow Mach number and � is the angle of attack. Otherwise all
parameters are identical, in particular the levels of second- and fourth-order dissipation, and we
regard the coefficients of lift cL, and drag cD as the functionals of interest. For the subsonic case,
the analytic values of the coefficients are known; to obtain reliable estimates in the other cases
calculations on globally refined meshes were performed and Richardson extrapolation applied. All
errors shown are with respect to these results.

The convergence of all cases is displayed in Figure 1 for global refinement, refinement based on
local solution gradients (where the indicator on a grid face is the change in total pressure across
the face [18]), and refinement using the dissipation-error estimator. For the latter calculations the
error estimate (2), and corrected values of cL and cD, obtained by subtracting the estimate from the
computed value, are also plotted. Immediately evident is that the solution gradient indicator only
converges in the subsonic case, where the problem has an elliptic character—in the transonic case
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it even approaches an incorrect value. Several modifications of the indicator have had no effect on
the character of the results. In contrast, the dissipation-error adaptation performs consistently well,
resulting in a factor 100 reduction in grid size for the highest achieved accuracy in comparison to
global refinement. The related error estimator agrees well with the actual error in all cases, and the
corrected value is therefore consistently more accurate than the uncorrected value. Some example
grids are shown in Figure 2, whereby the concentration of points in regions with a strong causal
connection to the surface of the aerofoil is apparent for the estimator refined grids.

5. CONCLUSIONS

A novel error estimator has been developed on the basis of sensitivity of functionals to artificial
viscosity in the flux function. The numerical overhead of the error estimator is purely the cost of
solving the adjoint equation on the existing grid, making it substantially cheaper than the related
approaches. Further the method can be regarded as an approximation to a true error representation
formula, and numerical tests have demonstrated excellent accuracy for a range of conditions. Future
work will be the extension of the scheme to viscous flows.
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